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An Introduction to Regression

Linear Regression

library(tidyverse)
library(car)

data <- starwars %>}, select(height,mass,sex) %>’ na.omit() )



(» The above code takes the starwars data set and uses the select() function to pull out
the columns labelled height, mass and sex. Then using the na.omit() function, I've
removed (using listwise deletion) any rows which contain missing values

Running a Linear Regression

Similar to correlation, regression (particularly multiple regression) is very common in the social
sciences. As such, lets dive into an example again using the starwars data set.

data <- data %>V

filter(sex == "male" | sex == "female") %>% @
mutate(sex = dplyr::recode(sex, ®
"male" =1,
"female" = 0))
linear_regression <- lm(height ~ sex + mass, data = data) ®
summary (linear_regression) @

(D Here I want to filter out the data set for observations (rows) that meet the following
conditions (in this case those with a sex “value” of either “male” or “female”).

(@ 1 then want to recode the sex variables to a numeric value for the purposes of doing the
linear regression using the recode () function. It takes the column as an input and takes
the syntax “old value” to “new value”.

(3 This is a basic linear regression formula using the 1m() function. It takes the form DV ~
IV + 1V, df).

@ To see the results of the regression, we simply run the summary () function and specify the
name we assigned the regression (i.e., linear_ regression).

Call:
Im(formula = height ~ sex + mass, data = data)

Residuals:
Min 1Q Median 3Q Max
-47.431 -3.892 2.007 8.108 48.526

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 113.8554 9.6656 11.779 4.91e-16 *xx*
sex -18.0741 8.5390 -2.117 0.0393 =*
mass 1.0144 0.1167 8.694 1.43e-11 **x



Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21.78 on 50 degrees of freedom
Multiple R-squared: 0.6056, Adjusted R-squared: 0.5898
F-statistic: 38.38 on 2 and 50 DF, p-value: 7.938e-11

Assumptions of Linear Regression

As some will attest to, we as social scientists don’t always explicitly test our statistical assump-
tions (this is a problem). However, as a parametric test, regression consists of the following
key assumptions: homogeneity of variance, residual normality, lack of multicollinearity, and
the independence of errors. Further, we likely want to at least investigate the potentiality
that there are outliers and influential cases. I'm going to show you how to test each of these
assumptions.

Homogeneity of Variance

Graphical

# Should Be a Straight Line
plot(linear_regression,1) @

(@ The plot(object,1) function when applied to a regression object will give you a plot
assessing visually the homogeneity of variance assumption. The line should be roughly
straight.



Residuals vs Fitted
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Fitted values
Im(height ~ sex + mass)
Statistical
library(lmtest)
# Goldfield Quandt Test (Less than .05 BAD)
gqtest(linear_regression) )

(D Statistically, we can also investigate homogeneity of variance using a Goldfield Quandt Test.
This is one test we hope is not statistically significant. To do this, we use the gqtest ()
function in the 1mtest package.

Goldfeld-Quandt test
data: 1linear_regression

GQ = 1.1014, dfl = 24, df2 = 23, p-value = 0.4096
alternative hypothesis: variance increases from segment 1 to 2

Residual Normality

Contrary to popular belief, normality doesn’t typically refer to the distribution of each individ-
ual variable in a regression. What matters is that the model residuals will be roughly normally



distributed. Below we will go through this. First, we’ll look at the assumption graphically
using what is known as a qq plot
Graphical

# Should Follow Straight Diagonal Line
plot(linear_regression,2) ©)

(@ Use the plot(object,2) with a regression will give you a standard qqplot with a reference
line. This line should look linear.
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Theoretical Quantiles
Im(height ~ sex + mass)

Statistical

We can also assess the assumption statistically using a Shapiro Wilks test. Keep in mind this
test can be heavily influenced by sample size but nonetheless it is a start.

shapiro.test(residuals(linear_regression)) @

(» The shapiro.test() function will get us what we want. However, we need to make sure
we get the residuals of the model so we need to use the residuals() function too.



Shapiro-Wilk normality test

data: residuals(linear_regression)
W = 0.93558, p-value = 0.006747

Multicollinearity

Multicollinearity (or too high of correlation between variables) can be an issue. One could
look at the correlation matrix but that’s highly subjective. A better idea might be to use what
is known as variance inflation factors. Essentially higher values (i.e., north of 10) indicate an
issue with said factor (i.e., variable). Below is the code for this using the car package.

Statistical (VIF)

# Individual Predictors (Less than 10 is O0OK)

car::vif(linear_regression)

# Mean Across Predictors (Ideally Around 1)

mean (vif (linear_regression))

# Tolerance (Greater than .20 Ideal)
1/vif (linear_regression)

(® Less than 10 is solid for this metric
(@ You want the mean value to be around 1.0
(3 You want tolerance to be > .20

sSex mass
1.1485 1.1485
[1] 1.1485
seXx mass
0.8707007 0.8707007

Independence of Errors

Long story short, errors shouldn’t be correlated with each other. We can assess this statistically
using the Durbin Watson test. Here we want the test to not be statistically significant. We
can use the durbinWatsonTest () function from the car function for this. The code is shown

below.



Statistical (Durbin Watson Test)

library(car)
car: :durbinWatsonTest(linear_regression)

lag Autocorrelation D-W Statistic p-value
1 0.09534174 1.807892  0.498
Alternative hypothesis: rho != 0

Finding Outliers & Influential Cases

Residuals

Typically, residuals outside of the range of -2.5 to 2.5 are a potential problem. However, this
doesn’t mean we should discard the data necessarily. We have to feel they are distinctly not
in the population we’re hoping to investigate. However, typically as a rule of thumb, having
more than 5% of your cases being outside of this range is not ideal.

# Greater than 5J of Data Potentially Problematic
data$residuals <- resid(linear_regression)
summary (data$residuals)

problem_residuals <- data %>} filter(residuals > 2.5 | residuals < -2.5)Q@

nrow(problem_residuals)/nrow(data) ®

(» This will filter the data set into observations which meet the criteria
(@ This tells me what percent of the cases are potentially problematic

Min. 1st Qu. Median Mean 3rd Qu. Max.
-47.431 -3.892 2.007 0.000 8.108 48.526
[1] 0.7358491

Influential Cases

Maybe a more useful investigation is that involving influential cases (i.e., cases which have
undue influence on the results). There are several metrics one can you. I'm just going to focus
on Cooks distance. Essentially values over 1 are potentially problematic. Below is the code
for this



data$cooks_dist <- round(cooks.distance(linear_regression),5) @
# Greater Than 1 is Problematic
summary (data$cooks_dist) ®

(» This rounds the values to 5 decimal places for ease of reading in addition to calculating the
Cooks distance for each observation.

(2 summary () function says the max value is .36 so there are no individual cases here that are
having undue influence on the results.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00016 0.00205 0.03116 0.02715 0.36309

Logistic Regression

So logistic regression is something I had to learn in order to do this workshop. Kssentially
however, logistic regression is used to give odds ratios of whether an observation belongs in
one of two categories based on a set of inputs. In industry, this is actually considered a form
of machine learning (so is most other regression). You can actually go above and beyond two
categories but we're not going to talk about polynomial regression in this workshop. Below is
how we run a logistic regression in R.

Running a Logistic Regression

# Create Logistic Model w/ Multiple Predictors
log_regression <- glm(sex ~ height + mass, family = binomial(link = "logit"), data = data)
summary (log_regression) @

# Determine Chi Square Diff

modelChi <- log_regression$null.deviance - log_regression$deviance ®
modeldf <- log_regression$df.null - log_regression$df.residual
chisq_prob <- 1 - pchisq(modelChi,modeldf)

print (chisq_prob)

# 0dds Ratios

exp(log_regression$coefficients) ®
# CI
exp(confint(log_regression)) ®

# Effect Size



effect_size <- modelChi/log_regression$null.deviance ®
print (effect_size)

(» This is your basic logistic regression formula. The family = binomial(link = "logit")
tells R that we want this model to be a logistic regression.

(@ Summarizes the results of the logistic regression

(3 Calculates a Chi Square Test to determine if the model is better than chance (less than
.05)

@ Exponentiation the coefficients will give you the odds ratios

(6) We can also get the confidence intervals of the odds ratios using the confint () function

(&) We can calculate an effect size using this formula

Call:
glm(formula = sex ~ height + mass, family = binomial(link = "logit"),
data = data)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.27693 2.11194 1.552 0.12075

height -0.06519 0.02458 -2.652 0.00799 x*x*
mass 0.14554 0.04719 3.084 0.00204 x*x*
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 48.292 on 52 degrees of freedom
Residual deviance: 30.705 on 50 degrees of freedom
AIC: 36.705

Number of Fisher Scoring iterations: 6

[1] 0.0001517089

(Intercept) height mass
26.4943310 0.9368878 1.1566654
2.5 % 97.5 %
(Intercept) 0.5524946 3056.5379217
height 0.8856929 0.9779379
mass 1.0685581 1.2942792

[1] 0.3641807



Assumptions of Logistic Regression

Like regular regression, logistic regression also has assumptions that must be met. They
are the linearity of each predictor with the log of the outcome, independence of errors, and
multicollinearity. I will show you how to test each of these below.

Linearity w/ Log of Outcome (Each Predictor)
Statistical

data$massINT <- data$mass*log(data$mass) @®
data$heightINT <- data$height*log(data$height)

linearity_assumption <- glm(sex ~ height + mass + massINT + heightINT, family = binomial(l

summary (linearity_assumption)

(@ You want the interaction terms of each predictor with the log of the outcome. These need
to go into the logistic regression.

(2 You can see them added here. You want none of the interaction terms to be statistically
significant

Call:
glm(formula = sex ~ height + mass + massINT + heightINT, family = binomial(link = "logit"),
data = data)

Coefficients:
Estimate Std. Error z value Pr(>lzl)
(Intercept) 1042.3027 703.0356 1.483 0.1382

height -41.2936 26.8629 -1.537 0.1242

mass 5.3989 3.2018 1.686 0.0918 .

massINT -0.9727 0.5926 -1.641 0.1007

heightINT 6.7461 4.3829 1.5639 0.1238

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 48.2922 on 52 degrees of freedom

Residual deviance: 8.4973 on 48 degrees of freedom
AIC: 18.497

10



Number of Fisher Scoring iterations: 13

Graphical

You can also just plot the logistic regression with the interaction terms and see if you get a
roughly straight line.

plot(linearity_assumption,2)

Q-Q Residuals
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glm(sex ~ height + mass + massINT + heightINT)

Independence of Errors

Like regular regression, we can test this assumption using a Durbin Watson Test. The code
here is below.

Statistical

durbinWatsonTest (log_regression)

11



lag Autocorrelation D-W Statistic p-value
1 0.0998344 1.776247  0.462
Alternative hypothesis: rho != 0

Multicollinearity

Multicollinearity can also be assessed just like regression by using the vif () function as well
as the 1/vif () function. We want these to be less than 10 and greater than .20 respectively.

Statistical

vif (log_regression)

height mass
4.812415 4.812415

1/vif (log_regression)

height mass
0.2077959 0.2077959

Finding Outliers & Influential Cases

Residuals

Residuals can be assessed the same was as it is in regular linear regression. The code is below
as a refresher.

# Greater than 5% of Data Potentially Problematic
data$residuals_log <- resid(log_regression)
summary (data$residuals_log)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.6335 0.0324 0.2731 0.1136 0.3751 2.1968

log_prob <- data %>% filter(residuals_log > 2 | residuals_log < -2)

12



round (nrow(log_prob) /nrow(data),3)

[1] 0.038

Influential Cases
As with residuals and linear regression compared to logistic regression, the same is true for
influential cases. You can see the code for this below.

data$cooks_dist_log <- cooks.distance(log_regression)
# Greater Than 1 is Problematic
summary (data$cooks_dist_log)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000000 0.0002653 0.0006915 0.0267272 0.0199929 0.5227436

13
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